
1

Supporting domain experts to
become citizen developers

Using mapmaking: themes,
abstraction and goal based
thinking

By Karl Jeffery and Dimitris Lyras

Sept 3 2021

Published by Software for Domain Experts
39-41 North Road, London, N7 9DP, UK
www.softwarefordomainexperts.com

Contact Karl Jeffery on jeffery@d-e-j.com

http://www.softwarefordomainexperts.com/
mailto:jeffery@d-e-j.com

2

Contents
Why support domain experts to become citizen developers...... 4

What this book is about .. 4

How organisations work ... 4

The term “citizen developer” .. 6

The authors’ experience in shipping 9

Example from the travel industry ... 10

You - a Person who Supports Citizen Developers.................. 11

A bumpy pathway to citizen development 13

Technology becomes our servant ... 13

A world where software is made more efficiently 15

Who will support this? .. 16

Your role ... 16

Why this is inevitable .. 18

Your obstacle - people who think organisations are about
script following ... 18

Understanding domain experts .. 19

What do domain experts do? ... 19

When domain experts use software 22

Not distracted by software ... 24

Being able to improve the logic .. 25

What domain experts don’t know .. 26

Why “big tech” offers limited support to domain experts 27

That outlines your challenge ... 28

Themes, abstractions, and scripted thinking 29

Introduction .. 29

Themes ... 30

3

Themes in procurement.. 33

Themes and solving big challenges 34

When themes meet computers .. 35

Why people want themes and computers don’t................... 35

Themes and driving, people vs machines 36

Themes in software building ... 37

Using abstraction to find themes .. 38

Abstractions are made for the purpose of goals 40

Making abstractions is scary ... 42

Agreeing on an abstraction ... 42

Abstractions and digital integration 43

Abstraction to connect data to insight 46

Abstraction and assessing technology 47

Scripted thinking ... 48

Scripted thinkers in IT ... 50

Some examples from real domains ... 51

Introduction .. 51

Maritime ... 52

Cybersecurity .. 54

Decarbonisation .. 55

Call centres ... 56

Competency management systems 57

Connecting citizen development with AI 58

Conclusion - authoritarian societies .. 60

4

Why support domain experts to become
citizen developers
What this book is about

Wouldn’t it be great if people with specialist needs for software
could have more of a role in developing it?

This book will explain why this is a good idea, why it is an
important idea, and what you can do to make it happen.

We’ll show what the obstacles are and provide some ‘mental’
tools which can help overcome them – themes, abstraction and
scripted thinking. We’ll give some examples about how it can
work, and where it can lead to.

We use the term ‘domain expert’ for someone who has
specialist expertise which is relevant to a certain area of an
organisation’s activities. That is an enormous range of people –
examples can be senior management, people who operate and
fix equipment, people who plan cleaning rosters, people who
diagnose patients or make marketing plans.

This book is about these domain experts becoming citizen
developers, developing and improving the software that they
use.

How organisations work

Before we delve into the arguments about software, here’s a
note about what organisations do in society and how they
function.

5

The effectiveness of our organisations affects the quality of
almost everything in our modern lives.

Education, healthcare, defence, physical security, social
security, regulation, employment. Management of food,
transport, clothes, money.

Our ability to combat climate change depends on effective
organisations. Only an effective organisation can deliver us the
products we expect, demand and are used to, but make less
emissions in the process.

We have organisations because they can do what we can do by
ourselves but more cheaply. We can survive without
organisations. We can defend ourselves, grow food, transport
ourselves, make clothes, and create a financial system, just as
we did in prehistoric times.

But organisations make it all happen more efficiently and
effectively, by doing it on a bigger scale, and breaking down the
tasks into small pieces which individual people can get a deep
understanding of.

Effective organisations have people in specific roles monitoring,
learning, and making decisions about some specialist aspect of
it. We can call these people domain experts. They are the
people who understand some key area of an organisation and
would like to continually improve their understanding.

If we are going to improve how the organisation runs, it will be
hard to do it by searching for better people to be the domain
experts. We’re stuck with the people we have, like you and me.

But there is potential for these domain experts to get better
tools to understand what is going on in their specific part of the
organisation, continually learn more about how it is working,
and make decisions. With better digital technology.

6

We could get better digital technology from large software
companies. But we’ll show in this book why this is unlikely to
happen, at least directly, because making specialist tools does
not usually fit the big technology business models.

The best way to get better digital technology is probably going
to be if the people who use it – the domain experts – are able to
get as close as possible to the development process or do part
of the development themselves.

So, this book is about supporting domain experts to become
citizen developers.

The term “citizen developer”

Citizen developer is a term we first heard in 2021. It builds on
efforts which have been going on for a decade or more to
develop ‘low code’ or ‘no code’ software tools. These can be
used to build software without coding expertise.

The literal definition of a citizen developer is someone, who is
not a professional software developer, who is developing
software.

With this definition, we have a concept which sounds exciting to
company managers. They have to pay large amounts of money
on professional software developers. Plus they see plenty of
other overheads involved in buying or commissioning software.
The meetings where people try to explain what they want, the
IT department finding software companies, the software
company team leaders, product managers and salespeople,
trying to persuade the company IT department that they have
what is needed.

7

They think, it would save a lot of money if we could manage
without all these people, and let the people who use software
build whatever software they want themselves.

But the idea of citizen developers is very scary to actual
developers. Not because they think their jobs could be replaced
by ‘citizens’. They know their work is harder than it may look.
Plumbers do not generally worry about their jobs being
replaced by citizens either.

But professional developers know how getting software
working, while itself very difficult, is only a small part of the
total job. You need something which can be robust and secure
for many years. There needs to be clarity and transparency
about how it works, so someone else can understand it and add
to it later. You need to be careful that your changes to the
software do not cause problems somewhere else, by
understanding how different systems depend on each other. So
even if a citizen developer could develop something which
works for them, it may not work for the organisation.

So the debate about citizen development in 2021 seems to end
up with a very low level of ambition. When actual projects for
citizen developers are discussed, they are fairly simple projects
which don’t need to integrate with anything else.

For example a tool to connect a database to a user interface
with a little logic. To calculate how much to pay someone, to
store data about an asset, to make a calendar base schedule, to
store data about performance, to generate quotes, to keep
track of tasks.

This book aims to raise the ambition level. Overall, we want to
see the use of software in organisations reaching its full
potential. We want to see specialist domain experts able to use
specialist digital tools, but without their companies paying

8

enormous sums for specialist software developers they may
never meet face to face.

We are not going to talk about citizen developers being able to
develop or improve all software that the company uses. But we
imagine that their ability to change things is something which
varies, just as their ability to change anything else in the
organisation varies.

In some areas they can develop their own software, in other
areas they can improve it or define improvements, with other
areas the domain experts can request or suggest improvements
which may be considered by a group of people, and may not be
considered.

Just like the organisation itself works, finding a balance between
ensuring consistency and continuity, and allowing continuous
development.

We want to combat what we see as two big weaknesses in the
conventional model of software delivery to organisations. These
constrain what digital technology can do in the big picture.

Firstly, the usual software product business model rewards
companies which are able to provide the same product for
multiple customers. It does not reward companies which make
specialist tools. Software companies sell their products by
making big promises about how they can solve all their clients’
problems, without acknowledging that their clients’ problems
are all different.

If the organisation has thousands of users doing the same thing,
and the same as people in other organisations, the usual
software business model is fine. But there are plenty of
organisations which are not like this. And the solution is not to
have more smaller software companies doing the same as big

9

software companies but on a smaller scale. This business model
does not scale down.

The second weakness in the conventional software business
model is that domain experts do not have any easy means of
correcting faults in their software logic, or even suggesting
improvements to it. So they end up with software which follows
a different model to the one they use in their heads.

The authors’ experience in shipping

The ideas in this book were developed out of the authors’ work
with digital technology in the commercial maritime (shipping)
industry.

This is an industry which puts people under very high risks in
personal safety, and has seen many serious accidents in the
past, thankfully fewer in the past two decades, but the risks
remain.
The industry has been made safer not through software, but
through a mixture of systems and human expertise.

People working in shipping come across different situations
every day and use their domain expertise to exercise judgement
in how to minimise risks.

Maritime software could do a great deal more to help these
people understand their situations, such as from informing
them, at the right moment, about experiences of others who
have been in the same position in the past.

But because all situations are different, it would take a great
deal of expertise to develop such software. Because activities in
the industry are so complex and diverse, it would be very hard
or expensive to make software which did this perfectly first
time. So this software would need to be designed in such a way

10

that it could be continually improved from the experience of
people using it.

But we don’t yet have ways for domain experts to improve their
own software, and the industry does not have huge budgets for
developing perfect-first-time software. So we have limits on
how good the software can be.

Example from the travel industry

Here's another example of where software does not achieve its
potential, in an industry you may be familiar with even if you do
not work in it - travel, such as hotels and airlines.

Have you ever had a situation with a hotel or airline, where
both you and the staff member assisting you wanted to make a
change to a plan or to your account, but the software would not
allow it, or made it very difficult? Or making the change was
theoretically possible with the organisation’s software, but was
very hard to do, and beyond the capability of the staff member
you were talking to? Probably because the software defined the
situation according to its internal logical steps, which are very
different to how you would handle the situation in the real
world?

Some examples could be changing a booking for one type of
hotel room to another, because one room option was not
available when you originally made the booking, but it is
available now. Or extending the length of stay, but finding that
your existing key card will only work for the length of stay in the
original booking. Difficulties adding more family members to a
booking. Complexities with refunds or credits.

The hotel or airline is trying to push you towards a chatbot or
junior member of staff to resolve the problem. But the only
person with the skills to achieve the change using the software
is a more senior manager, who is hard to reach.

11

In a pre-computer era, the changes could be made in an instant.
Yes, you can change your room, extend your stay, add people to
a booking, and with pen and paper I work out that you pay or
are refunded this amount, here it is in cash. Perhaps nothing
would need to even be written down, just a revised verbal
agreement between the customer and the hotel manager, and
perhaps a cash transaction.

Another example of problems caused by software is a hotel
midnight fire alarm caused by someone drunk and smoking in
their room. In a pre-software era, the issue could be identified
and resolved very quickly. Today we would have automatic fire
alarms forcing all guests out of their rooms, and automatically
calling the fire brigade. Meanwhile the night staff of the hotel
do not know how to use the software to identify the room,
switch off the alarm, and tell the fire brigade, and in the stress
of dealing with this, nobody thinks to do the most important
thing, inform the guests they can try and go back to sleep.

When hotel staff are talking to customers, they may
diplomatically call these situations "computer says no". Or say
that the computer restrictions are acting in everybody's best
interests, to maintain security or avoid something bad
happening. But what is actually happening is a computer
causing problems, obstructing the staff member for doing what
they want to do.

And what would resolve the problem is if the software could be
improved so it can actually follow the logic which the domain
expert uses in their mind (the staff member handling the
problem). It would be click, click, click, done.

You - a Person who Supports Citizen Developers

We propose a new organisational role of the person who
enables domain experts to become citizen developers.

12

Let’s say, that person is you.

To be good in this role, while you’ll need to be confident and
comfortable in the world of digital technology, you don’t
necessarily need a background as a software developer. A
background as a software developer may actually be unhelpful,
if it encourages you to look more at the code rather than the
real world which the code works in.

It will help if you have good analytical and logical skills to
understand the basics of how computer systems work and their
logic.

It will help if you have a good capability and interest in
understanding organisations and how they work.

It will help if you are good at communicating and explaining,
both orally and written. You can take in a large amount of
information, abstract in your mind what is important, and
present that to someone else. Perhaps you have written essays
or have considered being a journalist.

It will help if you have good empathetic and listening skills,
because you’ll need to talk and learn from a lot of people. It
may help if you have worked in a pub or restaurant, and
understand what a ‘service mindset’ is.

Humility will help a great deal, since you will be in worlds you
will initially have very little understanding of, your initial ideas
about how they work will need to be revised many times.

You’ll need to be resilient, practical, and able to keep at
something even though people may try to dissuade you.

And most of all it will help if you are the sort of person who likes
to understand what is going on behind what you can actually

13

see, so you can better understand it. And someone who can
think for yourself, to understand a situation you haven’t seen
before.

This sounds like a big demand. But if you’re in your, say, 20s,
educated to degree level, shouldn’t all of this be part of your
basic skillset?

A bumpy pathway to citizen development

Technology becomes our servant

This shift to citizen development could be accompanied by a
shift in how technology is treated in organisations, where it
becomes our servant.

Fitting the organisation around technology, where the
technology is really our master, is something which has
happened going back to the 1970s, when we had the first
software systems, such as for accounts or library books.

Today, software has such a big role in accounting and libraries
that the role of staff can be largely about entering things into
digital systems, such as scanning a library book someone wants
to take out, or updating accounting software about
transactions. And much of people’s focus ends up making the
software do what they want, such as when a library system
refuses to accept a book, or there is a complex accounting
transaction to try to enter into the software.

In organisations today, what is called ‘work’ can be a miserable
existence of endlessly logging onto different packages. These
are software packages which might have been never designed
for our specific organisation, and do not integrate together.

14

Rather than the software being fitted to how we work, we have
needed to adapt how we do our work into something this
software can handle.

In a world of domain experts doing citizen development, this all
changes. Librarians go back to their core role of helping people
find books they want or would like, and encouraging interest in
books. Accountants are managing the company’s accounts.
They have fixed all the problems with the software so it
interoperates perfectly and invisibly with their work, and it
doesn’t distract anybody’s focus.

Connected with this change of technology becoming our
servant, we put AI in its place. Much of the excitement about AI
in the past decade has been driven by the idea that AI tools can
do our work for us, or even do it better. For people who work in
organisations, this means AI becoming the master.

The idea of AI as a servant is something different, and probably
more useful. Servant AI would help the domain expert get a
better understanding of what is happening in the domain, such
as by processing large amounts of data to identify trends or
anomalies which a domain expert can look at more carefully.

Technology people sometimes use the term ‘high level’ to mean
closer to the organisation and people, and ‘low level’ to mean
closer to how the computer thinks and works.

Traditional software development has been about getting from
the ‘high level’ world of people and organisations to the ‘low
level’ world of code. The experts are the programmers who
learn how to convey what an organisation does in a way a
computer can understand.

With citizen development and low code, software development
is about going in the opposite direction, taking the ‘low level’ of
the code to the ‘high level’ of the organisation.

15

A world where software is made more efficiently

In this future technology world, software would be provided far
more efficiently, via a services and platforms model.

The usual software business model works like this. Software
companies are seeking to develop individual products which can
meet the needs of thousands of potential clients, so they can be
both very general or have large amounts of functionality which
will never be used.

Software companies are trying to develop new functionality for
their products so they can compete with competitors to
increase sales. In doing so, they complicate their own products,
and develop more functionality which may never be used.

Software companies try to recover the money spent developing
this functionality by finding ways to ‘lock in’ their customers,
making it difficult to switch software, resisting efforts to make it
easy to integrate.

Meanwhile domain experts in our organisations often have a
good idea about what software tools would help them, often
through frustration with what they have been given. They may
have good ideas about what needs improving in the tools they
work with. But their ideas are never implemented.

In the future technology world, we can see software companies
evolve from being a vendor of a product, to a provider of a
service which is within their sphere of expertise, since the
software company may also employ domain experts.

With this change, we are moving to a much closer collaboration
between people who use software and people who develop it.
We are removing all the communication layers and barriers

16

which normally exist between ‘users’ and ‘developers’ -
including IT departments who choose and buy software,
salespeople who sell it, requirements engineers and business
analysts, product managers and developer team leaders.

Who will support this?

Getting to a world of citizen developers will be bumpy. It is not
in everybody’s immediate interests.

The people easiest to convince of this new way of working will
probably be domain experts themselves, who will be happy to
adopt a way of working which makes their work easier. But they
often have the least say in how new software is developed or
chosen.

Big software companies may quietly oppose this shift. They
want to keep their products entrenched in organisations and
have a big interest in the status quo. Members of company IT
departments, with people building careers on their expertise
with specific products, may also favour the status quo.

Not all digital technology people will oppose this shift though.
There are already plenty of digital technology companies
orientated around providing services rather than products, such
as the “software as a service” companies. And many people in
the digital technology world enjoy thinking creatively, working
out new ways to achieve goals, and ‘disrupting’ the status quo.

Your role

Your role is to develops skills to help an organisation and its
domain experts get to this new world.

17

You may be quite young and inexperienced. In this case you also
have an uphill task because people well into their careers often
don’t take advice easily from someone in their 20s.

But the organisation’s domain experts will come to appreciate
you when they see how you can help them get on top of their
digital technology and make it work for them.

They will appreciate you more if you are a good listener,
learner, and explainer, you are able to adapt your plans when
you need to, you have a sense of practical solutions, and you
want to help people to do better work.

This could be a good career option for you, because it is
somewhere where you can generate enormous value in
organisations.

As someone early in your working life, you may feel your
existing options are doing work which people older are not
willing to do because it is so arduous, or doing work which
requires less skill and so can be paid at lower rates than older
people are willing to work for. Or doing work in domains where
older people do not have skills, such as software development.
So this provides you with a new alternative.

 To do this, you’re going to need to sit down with the domain
experts and understand what they do, their model of the world.
You’re going to need to understand the digital systems that
already exist. Then you’re going to work out how the situation
can be improved and how you can help people to get there.

In a later chapter, this book will outline three ‘mental tools’
which may help you – the ideas of identifying themes,
abstracting, and script-based thinking.

In the process of doing this, you’ll support our organisations to
move in other directions which you may approve of, where they

18

are driven by experienced individuals making good decisions,
rather than by bureaucratic process.

You’ll support non authoritarian countries to compete much
better with authoritarian ones in both economy and quality of
life.

You will help keep any digital systems transparent rather than
mysterious, make their data easily accessible and usable, and
make it much easier to maintain and demonstrate
cybersecurity.

Why this is inevitable

Consider that the trend towards more citizen development is
surely inevitable.

Just as some people want to design their own houses, choose
their own friends and clothes, as soon as they have the
capability to do it.

Digital technology development has favoured a centralised
approach up to now. That's because the business case in making
code favours ‘one to many’. Code it once, sell it to hundreds of
thousands. Manage things centrally.

Many aspects of society were also centrally run, at points in the
past. That pleased the kings, barons, and other leaders we had.
But as soon as it became possible for people to run their own
lives, that’s what they did.

Your obstacle - people who think organisations are
about script following

The biggest obstacle you may face is that many organisations,
perhaps most, are not designed to support the creativity this

19

needs. They are designed to create and enforce processes, or
scripts.

That’s how the people who run them think is the best way to
make them profitable or effective. And many people who work
in them agree, and feel most comfortable in this environment.

If an organisation truly achieves effectiveness from doing the
same task over and over again, and getting better and better at
it, with little variation in both demands for what it does and its
ability to deliver, then it does not need any of this.

But what’s more likely is that the organisation needs both
script-based thinkers and abstraction based thinkers, and it
needs to make room for both.

The organisation needs people who can think for themselves
outside a script if it needs to deal with unusual situations.
Shortages of staff, shortages of supply, changes to demand.
Regulatory, societal, and environmental changes. New
competitors. Or just something happening which hasn’t been
seen before.

In these situations, the organisation cannot rely on its script
followers. It needs to rely on someone’s judgement. And for
that person to make judgement, they need the best possible
understanding of what is going on. Supported by digital
technology.

Understanding domain experts

What do domain experts do?

In order to support domain experts to become citizen
developers, the first step is to understand what domain experts

20

do, what they need, what the computer systems providing them
need to do, why the conventional digital technology delivery
system doesn’t provide it, and how the situation can be
improved. This is what this chapter will explore.

Domain experts, in this book’s definition, are the people who
make the judgements or decisions in every organisation, based
on their understanding of how things work, and the information
they have.

The senior management are domain experts, but they are not
the only ones. The people who co-ordinate, schedule, monitor,
advise, fix, buy, recruit, train, operate equipment, look after
people and things, are domain experts.

As examples, domain experts need to decide what their
priorities are at any time, what is most worthwhile spending
their time on today. They may be making schedules and plans,
involving customers, staff, assets, or tasks, delivering certain
outputs most effectively and at the necessary time. They may
be making purchases, and judgements about whether this
specific purchase is the most appropriate choice.

They may need to assess the competence of other people they
are working with, in their team or under their management.
They have to assess risks, including fraud, safety, cybersecurity,
compliance with regulations. They need to determine if there is
a pattern of events happening which may give insight into what
is really going on.

These work processes all involve situation awareness and
decision making. They need to know what is happening, and
determine whether they are making the right choice.

When domain experts do their work well, the organisation
functions well, doing whatever its role in society is.

21

Having well-functioning organisations working towards a goal is
the pathway to fixing big problems in society. Such as improving
cybersecurity or making decisions to minimise climate impact,
supporting people’s education, or giving support to people in
difficulty. All of these involve the right people having the right
situation awareness at the right time.

To achieve the societal goals, the societal goal needs to be
accepted as the organisation’s goal. That is outside the scope of
this book, and probably involves the right incentives being set
by government, investors, or customers. But once this is done,
and it is increasingly being done, the next challenge is the
thousands of decisions people in the company make every day,
so they can best achieve these goals.

Another way to understand how many domain experts work,
and how digital technology can help them, is to see them as
detectives. They are putting together information from multiple
sources, together with their own understanding, to try to work
out what is happening, or what happened. Or if something is
different to what they would normally expect, or if they can see
how something can be better.

To be a good detective, it is helpful to have transparency, which
could be defined as the ability to get answers to questions that
arise in their minds. Such as when a detective working on a
crime realises it would be helpful to be able to ask someone a
certain question and get a reliable answer. Where they are
using digital systems, they want them to be clear and flexible
enough to provide this.

In their heads, they build models about how they think things
work. For example: I change this, and that happens. This cause
drives this effect. When I see this indication, it means a certain
something is going wrong. When I have to decide between two
options, this is how I choose the best or least risky one.

22

If we ask, do decision makers in our organisations have the best
possible understanding of a situation based on the data that’s
available, including the large amounts of new data the
organisation has started gathering since it became much easier
to do? The answer is probably no.

The things domain experts want to find out and decide on have
an enormous range. Let’s take an example of a manager of a
coffee shop which is part of a chain. Much of the decision-
making is being made by head office, such as about
presentation of the brand, the products, the visual design.

But the manager is still left with many decisions to make,
including how to evaluate staff, how much supplies to order,
how many staff members to schedule at different times, how to
handle unhappy customers or problems with staff, what to do
when equipment is broken, or crimes are committed.

Note that domain experts do not necessary all follow the same
model in their minds, even two domain experts doing the same
task. As in the example above, two different coffee shop
managers may make different hiring decisions. So when
supporting domain experts in their decision making, such as
with digital technology, a tool which works for one person won’t
necessarily work for another in the same role.

When domain experts use software

When domain experts use software, the ideal is that the digital
tools deliver this situation awareness, they should fit with the
domain expert’s mental models. The domain expert is able to
understand how the software works and its logic, and have
some mechanism for the software to be improved according to
their suggestions or requests.

23

That sounds complicated. It may sound simpler as an example.
Consider an aeroplane pilot. The pilot uses digital tools to get
situation awareness of what is happening, such as the plane’s
position and altitude. The tools are designed to fit the pilot’s
mental models. When the pilot sees a need to increase speed,
turn, or prepare to land, the tools to do that are immediately
available and intuitive to use.

The pilot needs some sense of how the instruments work, and
how their data is processed. A number of well-known accidents
have occurred because sensors, and the processing of the data,
were giving a pilot wrong information and the pilot was not able
to diagnose this. We can imagine many accidents were avoided
because the pilot was able to diagnose that the information
being received is due to faulty sensors, not something bad
happening outside the aeroplane.

While we would not expect a pilot to alter the software in an
aeroplane, you would expect some feedback mechanism where
a pilot can inform manufacturers of when the software gave
inaccurate or misleading information, where the software failed
to diagnose that it was being fed data from a faulty sensor, or
where its logic performed in a way which was different to what
was expected according to the pilot’s mental models, making it
less intuitive to use.

Another way to explain how domain experts want to use
software is to say, good software is software we don’t notice at
all. For example, you may have dealt with many different parcel
courier websites when tracking parcel deliveries. You may have
noticed that some are so intuitive you barely notice them, as
you find out where your parcel is, make sure you are home
when it arrives, or give instructions for a redelivery. Other
parcel websites seem to give you many unnecessary barriers,
such as requiring registrations, and do not give you much useful
information at the end of it.

24

Just like with any other tool we use in our lives, if we don’t have
to think about the tool as we use it, that means it is a good tool.

Not distracted by software

Building on this, if domain experts are to focus on
understanding a situation and make the best decisions, they
should not have their focus pulled away by software. Such as
putting effort into figuring out how the software works, what its
internal logic is.

You may have had experience working out a computer system’s
logic when trying different approaches to buying something
online to see how you get the best price. But this is not the sort
of thing we want our organisational domain experts to be doing.

This problem is compounded for someone working in
cybersecurity. The best way to understand hacking attempts is
through a real world lense. Why did someone want to do this,
how was it made possible or easy to do it, or easy enough to
justify the expected rewards? How did they obtain the
password?

How does the bank I have an account with ensure no-one else
can access my funds? How does this sensor prevent someone
from tampering with it, or how would I detect if that was
happening? Why would someone want to tamper with it?

But too often, cybersecurity attention goes entirely on the
digital systems themselves. Cybersecurity people often have an
IT background, and IT people often find it easier to think about
digital systems than people, and so their focus easily goes there.
So we get more and more digital controls, such as demands for
more complex passwords. When people start writing the
passwords down or sharing them to make it possible to do their
work, this approach may have reached its limits.

25

Being able to improve the logic

In the organisational software world, our digital technology will
typically have logic in it which is designed to make our lives
easier.

There may be logic to identify what it thinks are duplicates, such
as when someone enters an invoice into an accounting software
which already has a record of an invoice with the same number.
Or someone enters a name in a contact management system
when someone with the same name is already there. The
software may warn us when this happens and allow us to check,
or it may automatically remove what it thinks is a duplicate.

Or there may be logic to determine whether the plan we are
making is workable, such as giving us a warning if someone
needs to be in two different places at once, or actually rejecting
our plan.

This logic can be a great help when it works, but very painful
when it does not work. Think of the feeling you have when
Microsoft Word autocorrects something which was correct to
begin with, such as the company name IHS autocorrected to
HIS. And when your work involves safety risks or large amounts
of money, the pain is greater.

The de-duplication logic may be classifying two items as
duplicates when in the real world they do look similar but also
have some small difference the computer system disregards.
Such as two very similar parts from the same supplier. Or the
logic classifies two items as unique, when they have different ID
numbers, but are actually the same thing, such as parts made by
different suppliers which can be used interchangeably.

But it could be cost effective to make better methods for
domain experts to get this logic corrected, updated, or aligned

26

with their preferences. This may actually be the best business
case for citizen development.

The domain expert is not actually ‘developing’ software. But we
are not seeing the world with developers on one side of a
barrier and ‘users’ on the other. And computer code is itself
logic. There is no barrier between the roles of saying how
software logic should work, saying how code logic should work,
and making code. It is fair to say, the domain expert is a citizen
developer.

What domain experts don’t know

Domain experts would not normally be experts in digital
technology unless they are digital experts. So they would not
normally know what is possible for software to provide, or what
they could demand.

This is an additional complexity in your role of enabling domain
experts to become citizen developers.

The organisations which employ domain experts expect them to
solve problems, and know what tools they should use to get
there, since they are the domain experts, after all. So if the
domain experts are not demanding better software, the
organisation is unlikely to demand it on their behalf.

So a big part of your role will be educating, helping domain
experts to better understand how digital tools could help them
more, and knowing what a good tool looks like, so they can ask
for it. The later chapters of this book should give you some
ideas how to do that.

27

Why “big tech” offers limited support to domain
experts

To go further into a point this book made previously, big
technology companies typically want to make products which
many different industries can use. Their ‘product’ business
model gives them most profitability when they can build
something once and sell it thousands or millions of times.

People often use the terminology vertical and horizontal to
describe this situation, where vertical means a niched industry,
and horizontal means something which can work across
multiple industries. The narrower the niche, the less attractive it
is to big technology companies. Conversely, technology
companies make big profits when they can make the same
product for multiple industries, which could be called
horizontal. Such as general office tools, software for accounting,
software for sales management, human resources, and in some
cases software for maintenance and purchasing.

It would suit big technology companies if their customers could
be standardised in their needs. Since the real world is not very
standardised, this is not going to happen. But there’s an area of
conflict in the middle, where a company may be persuaded to
adopt a generic tool which proves to be unsuitable for their
specific needs, or if a company finds that it is preferable to use a
lower cost, more generic but also more robust tool with
thousands of customers, than a higher cost, specific tool, which
has few customers and also more bugs.

But to deliver the sort of organisational improvements
described in the beginning of this book, more generic software
is probably not the way to go.

A specialist industry has specific data which is worth collecting,
or needs checking, or passing on to someone specific, and it
needs specific knowledge to know how to do it. This drives the

28

need for specialist software, and specialists to be involved in
making it, or able to improve or correct it.

A specialist industry like maritime has its own internal language
which domain experts use to explain clearly to others what they
mean. It might be useful for digital technology to be able to
understand this language when it is in written form. But that
would also require specialist expertise, something most big tech
companies would not be interested in developing themselves.

Big tech companies may be interested in making algorithms for
how thousands of identical pieces of equipment work, like the
output of a large manufacturer. But they are unlikely to be
interested in helping a company with thousands of different
pieces of equipment develop algorithms, such as a maritime
company, or any industrial plant.

None of this will be made clear in the sales process. Big tech
companies employ salespeople with a brief to show how their
tools can solve any business or social problem. This can be a
promise very far from the truth.

That outlines your challenge

Now we have outlined your challenge in supporting domain
experts to become citizen developers.

While there are many potential benefits, the people who will
directly benefit the most, the domain experts, may not
understand it, or be ready to demand it. The organisation which
employs them will be unlikely to provide the facility if the
domain experts themselves are not demanding it.

And the big technology industry, which supplies most digital
technology, and has much influence on organisational
technology overall, might not see this approach as being in their
interests.

29

But there could be a great pathway open for you, if you go into
this problem with humility, open mindedness, a willingness to
engage with people and understand what they do, if you have a
strong desire for finding workable solutions to problems, one
step at a time. If you can connect things together, particularly
the computer and digital worlds. You could become a very
useful person to your organisation and the domain experts in it.

For this to be a good pathway for you, you will need to be ready
to understand that if people in powerful positions tell you
something won’t work, it may mean that it just doesn’t fit with
their vision of how the world works, not that it doesn’t work at
all. But they may not want to hear it.

Themes, abstractions, and scripted thinking

Introduction

In this chapter, we’ll look at three ‘mental tools’ of themes,
abstractions, and scripted thinking, which might help you
understand where you need to go and what is stopping you
from getting there.

Firstly, we’ll look at themes. People think in themes, computers
don’t. But in traversing the ‘digital’ domain to the ‘conceptual’
(or human mind) domain, we’re looking for themes. This is how
people understand what is happening in their world, and
understand how their digital technology works.

Secondly, we’ll look at abstraction, the process of moving from
the highly granular world of digital systems into a picture
someone can use to understand what is happening.

30

Everything in computer systems is highly granular – data from
sensors, data in databases, enormous volumes of e-mails, and
whatever else. But information needs to be ‘manageable’, or
much more abstracted, for people to work with it. You can think
of it like a process of mapmaking – reducing large amounts of
data into something smaller and which you can easily absorb.
Such as a theme.

Thirdly we’ll look at scripted thinking. This is the belief of people
who may oppose you, that we can get where we need to go by
following pre-defined steps. There are no pre-defined steps in
enabling domain experts to become citizen developers,
abstracting, or developing themes. You need to be able to think
for yourself.

The alternative to scripted thinking, which you need to help
domain experts become citizen developers, is goal based
thinking – a mental orientation around the goal. The best
pathway to get there may change, so you have to be always
ready to drop your script.

The combination of goal based thinking, abstracting and finding
themes is something which could be called ‘mapmaking’ –
working out the pathway to take your organisation, or your
task, where it needs to go, based on what you have available,
and working out how digital technology can help you on that
path.

Themes

We could define a theme as a group of things together.

If the theme is ‘summer’, that implies a group of things we
expect, such as weather, clothing, activities.

As human beings, our minds make the world easier to
understand using themes. We are evolved to think in themes.

31

Just about anything in the natural world can be seen using
themes at any level. Personal relationships, nature, geography,
evolution, changes in time.

The reason we are talking about themes here is that computers
do not think in this way. Computers can work with data about
the world with enormous resolution. If for some reason we
have a summer but where the weather is colder, more like
winter, that’s no problem for a computer to grasp.

The world of organisational digital technology has often been
about pushing people to see the world the computer sees it,
without any themes. We sometimes have to work with tools in
a very granular way, entering detailed passwords, entering
account transactions at a journal level, reviewing database data
directly.

A computer system developed to use themes would have no
cybersecurity challenges. You use your laptop in a completely
different way to anybody else, with different patterns for
software applications, activities, times of day. In other word,
your use of a laptop could be a theme. But to a computer, the
only thing which differentiates you from a hacker is something
very granular, a knowledge of a complex login password.

Themes are important in the working world, and good
organisational software might be built to support these themes,
rather than push us to work without them. Domain experts
doing citizen development could help us get there.

Consider that an ice cream van operator knows that the amount
of business tomorrow depends on what the weather will be, and
orders supplies accordingly. So their ordering software could
start by checking tomorrow’s weather forecast.

Imagine explaining a crime to a police officer. The police officer
is mentally filing your report into different categories based on

32

their experience. Is this domestic violence, robbery, related to
homelessness, mental illness? Is this ‘petty crime’ or something
bigger? Does this threaten people’s sense of safety on the
street? Is this something really serious like a child abduction? Is
the person telling the story credible? These are all themes.

Using themes makes it much easier for the police officer to be
effective, quickly categorising a problem, and identifying how
much resources to allocate to it.

A doctor may look for certain themes when assessing a patient,
such as the person’s age, or indications about their diet and
lifestyle. But their computer system will just give us data from
sensors or forms.

Other examples of where themes would be used are solicitors
making an initial review of a case, a schoolteacher determining
what would be most useful for a class, an engineer assessing a
mechanical problem.

As human beings, we seek to reach a point where what we
observe fits a theme we know. At that point, we feel comfortable
that we understand a situation well enough to make decisions.

Themes are not necessarily right or wrong, and different people
can have different sets of themes while working in the same
environment. Like two investors which use different rules of
thumb. What matters is that they work for the people
concerned, which they presumably do, since if they often led us
in the wrong direction, it would eventually be clear, and we
would stop using them.

Politicians try to create themes, such as a theme for the cause
of a drop in people’s living standards, which sounds believable.
We could define an election as a choice about which politician’s
theme we deem most credible.

33

Cybersecurity can be hard because initially there are no themes.
But until we have distilled what we see into themes, we haven’t
understood what is going on.

Examples of common cybersecurity themes relating to hacking a
website could be hackers trying to obtain people’s passwords
via a hackable website then trying the same password to get
into their e-mail; a move towards multifactor access to services,
such as a text message sent to a phone in addition to a
password; attempts to steal SIM cards. Themes relating to
phishing could be making sure staff are aware of the threat,
using alternative means to mitigate the risk of a hacker
obtaining a password, and improved e-mail screening systems.

Themes in procurement

As a more specific example of how we might use a theme in
organisational digital technology, here are some common
themes used by people who have a role in organisational
procurement, to understand what is happening.

A common theme is for a supplier to charge less for the initial
contract, and charge more for services after sales. Just as PC
printers are sold cheaply but their cartridges are expensive.

Another theme is when owners try to bypass these extra
charges by going to an alternative supplier, also as we see on
printer cartridges, there are alternative suppliers selling for
about half the price.

Alternative suppliers thrive if they can match their products to
what the equipment needs, although the manufacturers may
provide limited information about how their products work, to
make this harder.

34

Perhaps the provider of the equipment, such as the printer, will
go to a separate supplier to make the parts (the cartridges) – in
which case it will ask them to sign a contract preventing them
from selling their parts to customers directly unbranded.

It is not implausible for purchasing software to incorporate
these themes.

Themes and solving big challenges

Here are some examples of how we use themes in solving big
problems, including climate change, cybersecurity, and fair cash
distribution.

A theme for climate is a switch to electric cars. It bundles many
complex questions together, such as the emissions made in
generating electricity and battery manufacturing. But by and
large experts agree that the move is better for the environment
because it allows a release from oil-based fuels and a path to
renewable power for transport. So, working with the theme
makes life easier.

In cybersecurity - a simplifying theme when solving the
challenge in the big picture is to try to assess the overall
attitude a company has to cybersecurity, using a deeper layer of
themes of what we would expect good and bad to look like. This
can be easier for an auditor to determine, rather than looking at
the system from bottom up, in a granular way, inspecting the
digital systems themselves.

For the question of fairness of cash distribution in society,
people relate this to the theme of fairness in education. It is not
directly linked to fair cash distribution, but is indirectly related,
and easier to influence.

35

When themes meet computers
The world of people-with-themes meets the worlds of
computers in two different places.

One is when we are building computer software which helps
someone to understand the world. Could the software help us
categorise what we are seeing using the themes we already
use? What sort of crime is this, what sort of problem are we
facing here?

The other is when people are trying to work with or understand
digital systems - it is easier if we can understand the digital
system using themes. For example, if it is a website, we could
have themes relating to how the website was built and by what
sort of company, if its construction is based on web standards,
how old it is, do I need to see the code to understand how it
works, and if so, how easy is it to understand the code.

Why people want themes and computers don’t

The importance of themes to people, and not to computers, can
be explained better when you consider how computers and
minds work differently.

A computer can handle enormous data sets, but with fairly
narrow processing - either rigid calculation models or logic, or
the potential of machine learning, but still only learning some
narrow thing. It can only approach human capability of doing a
broader task, like driving, if that task can be broken up into
thousands of sub tasks which can all be programmed narrowly.

A computer itself can only work at high granularity, following
very precise instructions about how to do every little thing. We
have programming languages which reduce the granularity to
some degree, but they don’t take away the need for precision,

36

and can’t, because a computer can’t guess what we want it to
do.

Meanwhile a person can handle only small data sets - such as
the 8 or so phone numbers we can all remember. But we can
handle information with a level of richness, variability, or depth
a computer cannot approach. We evolved to be able to live in
tribes of 100 people, understanding them all as individuals, and
having a relationship with all of them, including negotiating
power, building relationships, and in some cases controlling
others. Plus understanding what we needed to survive with the
help or otherwise of our tribe.

Themes and driving, people vs machines

Here’s a way to explain how important themes are to the
success or failure of digital systems in the real world – the story
of autonomous car technology development.

The concept of themes helps us understand how people and
computers drive cars in completely different ways.

When people are driving, we use themes, such as the weather
condition and what driving style is appropriate, what we think
someone else is doing based on what we know about them,
what the regulations say. Each theme is like downloading a
book into our mind and invoking details we are not consciously
aware of.

The computer on the other hand is not using themes but trying
to create a detailed picture of what is around the car - other
vehicles, people, objects, and where they are moving to, and
what road signs say.

The weakness of the computer, and of autonomous car
technology development to date (up to 2021), is that this
detailed picture approach only works if you can understand

37

every necessary detail, which means that a computer has been
programmed to understand it. If something happens outside
this scope, the system fails.

Meanwhile a theme-based approach can easily be extended to
something new. And a trip in a car will often involve an event
which has not been seen before and so a computer has not
been programmed to understand.

Take an example of a traffic light which seems to be stuck on
red, a vehicle not moving in the road, a person standing in the
road. While these would all challenge an autonomous car, a
human car driver would immediately search a deeper mental
directory of themes to figure out what to do.

Am I sure the traffic light is broken or is it just programmed for a
long wait? is there a vehicle detector which can be woken up, is
the street quiet enough that crossing under a red light is safe? Is
the vehicle broken down or likely to move in a few minutes, can
it be driven around safely? Is the person in the road mentally ill,
had an accident, or protesting, and what does that mean about
whether it is safe to drive around them?

Themes in software building

To get all these themes working in software, it is useful if the
theme is carried through as deeply in the software as possible.
To use software development language, we want the theme to
‘persist’.

In a typical software development process, the discussion
between developers and domain experts, which will include
identifying themes, may only happen in the beginning as part of
‘requirements gathering’. But then the software developers are
left by themselves to build what they think the domain experts
want. The domain experts’ themes can easily be lost.

38

For example, a medical expert may say that they would like
software which can categorise the symptoms they see into the
themes representing cause A or cause B. There will be lots of
knowledge behind this theme making which the doctor uses,
which won’t necessarily come up in the initial discussion with
software developers.

The software developer may make software which can work
with available data from sensors on the patient’s body, and
write logic which can try to allocate this to a theme. But without
the medical expert being closely involved in the software
development process, the logic could easily end up wrong. And
without a means for the doctor to subsequently update the
software, the software would be useless.

And in real life, the doctor is looking at multiple data points,
including from speaking to the patient. The doctor may be
invoking subconscious knowledge from experience. It is possible
to build software which incorporates this, but not with software
developers left to themselves.

Using abstraction to find themes

Our second mental tool we discuss in this section is abstraction.
The mental process of generating themes could be called
‘abstraction’, because you are coming up with a simplified
version of reality, but which is easier to work with.

Domain experts often don’t do the abstraction to create the
themes themselves. Much of it is passed along from one domain
expert to another, or taught when people do their formal
training. “Here’s how you know that the driving conditions are
wintery enough to change your driving style.”

39

When one domain expert shares with another what they think
is important, they are also sharing methods for how to abstract
what they see into themes.

Abstraction is very hard mental work. To be good at abstracting
you might want to adopt some of the techniques which creative
people use, such as making some time and space clear from
distractions in order to do it, and being aware that people with
other thinking styles may try to get in your way. And note that
even creative professionals cannot usually be creative for 8
hours a day.

Abstracting is not a skill which people today develop or are used
to developing. Like a muscle which is rarely used. As a younger
person you might have a more developed abstraction skill than
people many times older, because it comes out in play, or when
doing anything creative, or even having conversations with a
group of people in the pub.

To describe being funny in a very boring way, it often involves
abstracting, coming up with an interesting theme to explain
what is going on in an unexpected way.

You may be good at abstracting if you have high levels of
curiosity, you want to understand what is happening, and see it
in different ways, and from different perspectives, and find
ways to make it all fit together.

If you are the sort of person who likes to observe different
management styles, such as autocratic vs collaborative, and
seeing where they work and don’t work, you may be this sort of
person.

Another way to explain abstraction is to think about what a
journalist does. The journalist researches a story by getting
deeply absorbed in what is happening, through conversations
with people and reading material about it. Then they produce a

40

short written article which is itself an abstraction of what is in
their minds.

Anybody teaching anything will often use abstractions, so they
can connect the gap between their own in-depth knowledge of
something, and their student’s lack of knowledge about it.

Any musician connects the details in their music about what
should be played, with the audience’s need for a picture which
makes sense as an abstraction.

Abstractions are made for the purpose of goals

The reason we abstract is to achieve or understand goals. All of
this happens intuitively, but we are breaking it down here to
better understand how it should happen in the context of digital
technology.

For example, how to achieve our own goals, how to understand
other people's goals, how to support people in their goals.

As human beings, we can usually mentally grasp goals easily,
although we may vary in our capacity to associate granular data
with goals. For example, some people are better than others in
abstracting granular data about Covid cases, deaths and
vaccination levels, to recognise that getting a vaccination should
be their goal.

The simplest form of abstraction to explain is working out how
we can better achieve our own goals. A geographical map
maker could make many choices as to what is and isn't included
- it could include wildlife, history, population, businesses,
geology, for example. But the purpose of the map is normally to
help us to get somewhere, so there is a priority on roads and
place names.

41

Abstracting to understand other people's goals is also
something we do intuitively, but not something any computer
could do. Just as we could easily abstract to understand the
purpose of a room, from knowing a few details about what it is
it.

Consider this story. Roger complains to Bob that he can’t get
restaurants to cook hamburgers rare enough for him. Bob
replies that he can get his barber to cut his hair short enough.

The abstraction, which Bob and you understand, perhaps
intuitively, is that Roger is talking about the problem achieving a
goal of persuading a service provider to do something unusual.
Bob replies with a story of his own problem with this goal. This
is nothing to do with hamburgers or barbers, something a
computer would never understand.

Supporting people in their goals using abstraction is something
we might do with computer software. Consider how an
accounting software package might, on being opened, tell the
user, a small business owner, how many bills are becoming due
to pay, how much cash is in the bank, how much money is
coming in, any urgent tasks, and what the cashflows look like
over coming weeks. These are things a small business owner
would have wanted to know since we had businesses, money
and bills, and their models for these things will already be
ingrained in their minds. But when the data is all in a software
system, providing this is an abstraction from the granular data
in the system.

If the data relates to what is going on in an organisation, then
by making abstractions, we create a more general picture,
which may be useful to someone when relating something from
their memory about a similar case which happend in the past. In
a similar way, a journalist may tell a story about something
specific, but relate it to general goals, which a reader may relate
to, such as taking care of children, or seeking a better job.

42

Making abstractions is scary

Making abstractions is scary because it is difficult - and because
other people may not agree with the abstractions we make. We
are used to working with others at certain abstraction levels
which feel comfortable. So, creating new abstractions within an
organisation is very hard.

The more intellectual energy / deeper engagement which is
involved in making an abstraction the more fear it invokes. So
doing good abstractions becomes a direct fight against our own
fear. Perhaps this is the biggest challenge. Perhaps there are
ways an organisation can be structured to support or push
people to get beyond their fears in making abstractions.

Sometimes we pretend to make abstractions because we think
it makes us look clever or interesting, but what we are actually
doing is borrowing abstractions which have already been
created and tested by others, but we get better than others at
spotting and stealing them. Such as when someone shares a
clever sounding political opinion about what is causing what is
happening, which was originally created by someone else.

Agreeing on an abstraction

Often, not all the domain experts in a company have the same
abstractions.

In supporting citizen developers, you may need to want to get a
consensus between people about how the system works - or

43

have a system which can work with differing views. This would
enable us to have a single digital tool everyone can use.

Getting a consensus on what is going on can be hard work but
plenty of people know how to do it, such as anyone who has
ever chaired a meeting.

If you are not seeing agreement you may need to increase the
abstraction level, until you have a core goal which everyone
agrees on. For example, people in a community meeting may
have different views about what is most urgent, but a
consensus can be achieved by abstracting to a core goal
everyone agrees on, such as safety, enjoyment, and outside
play, then having a more concrete discussion about which
methods would best achieve this.

The right abstraction is not always obvious. It may only be
achieved using creativity, guesswork and finding out if the
guessed abstraction resonates with other people. Such as when
a comedian tests out new material on a live audience.

Abstractions and digital integration

The link with digital technology is that we use abstraction to
stride the gap between the granular data in a computer system,
and the abstracted understanding which people have.

This will be easy enough to do when the input and output
purposes are related, such as entering data about a school class
attendance which you later use to determine the attendance of
the class.

But this gets much more complex when the data is being used in
different ways, as it increasingly is in our organisations, such as
if the attendance data is then used to compare schools.

44

The data, once collected, is just items in a database. But if it is
only seen in this way, rather than a class register of attendance,
then a lot of value is lost.

Let’s say we have data about people, containing their first
name, last name, passport number, date of birth. But we have
lost our record of where this data came from, how reliable it is,
and whether there may be any risk of duplicates. Is this data of
any value now?

Here’s another example. Consider what data you might have
about your kitchen. Your kitchen has chairs, a table, a cooker,
brown walls, it is in a building which is 40 years old.

We can get plenty of data about all of these things. The power
of the cooker hobs, the height of the chairs, the ages and
colours of everything.

If we combine this granular data, it would be very hard to make
sense of. The electric hob uses 13 Amps, the seat of the chair is
40cm high, the toaster is 5 years old, we paid £180 on a bread
machine. In our database we would have to keep track of what
exactly the measurement is. Perhaps in future we have new
chairs, a sandwich toaster, and a gas hob, and we are still trying
to use the data.

If this was organisational data, we may want to use it in ways
that we can’t predict when we gather it. Such as, we want to
assess how much the whole kitchen is worth, find out if we have
room for another piece of equipment, find out if another person
can use the kitchen, see if it is suitable for a disabled or obese
person.

But this is what people often try to do with data integration
projects, they just put the data together. It is easy to do
technically, like pasting two columns into a spreadsheet, but not
much use in the real world.

45

So, we need a better way to combine this data together than
just throwing it together into one database.

Perhaps the best way to do it is to integrate it together similar
to how the real world integrates together. In the real world, it
makes sense to integrate chairs into a kitchen. This fits with a
goal we all understand, of making food and eating dinner, with
the people who we share the house with, at the same time. We
all understand the goals of a kitchen.

It doesn’t make sense to integrate data of chair height being
40cm and cooker hob being 13 Amp. There is no sense of any
goal here. But if we were talking just about chairs, or just about
cookers, then there would.

To apply this idea to a more complex real world organisational
problem, let’s consider a police detective has data files from a
mobile phone, a report from a witness statement, a past history
of a suspect. A detective would not, we imagine, consider
integrating this into a data lake.

The best way to use it may be to keep it forever in terms of its
abstraction, a mobile phone data, a witness statement, a past
history of a suspect. These are all part of a detective’s work, and
when expressed like this, we understand how they support the
detective’s goals. If we compiled all of these data formats into a
‘data lake’ it would be harder to see how the individual data
components help with the goals, and we might also have lost
our track of how they fit together.

Here’s another example of the value of integrating data in the
abstract. As a car driver, you might find it very frustrating to
encounter multiple temporary traffic lights because people are
doing road works on a short drive you regularly take. You think,
why are they digging up the same piece of road over and over
again? Why are the temporary traffic lights so badly timed? Isn’t

46

this city meant to be one of the most digitally advanced in the
world?

There is data about all of these things, but it is all in separate
systems. This can include systems the water company uses for
planning their pipeline maintenance projects which may involve
roadworks, the system where water and communications
companies apply to the council for the work they want to do,
systems for programming temporary traffic lights, and Google
Maps data about the current congestion levels.

If you asked a software programmer to integrate all this data
together, they would assume you mean at a data level, which
would be virtually impossible, and probably not a project
anyone would ever attempt, because all of the data has a
completely different context, and collecting each of the data
sets has a different goal.

But if the data can be integrated together at an abstracted level,
the people working with it can understand what is going on as
easily as someone could read the paragraph above describing
the situation. And once they have understood it, they can make
steps to improve it, such as knowing which traffic light to
reprogram, or which road maintenance program to reschedule.

Abstraction to connect data to insight

In supporting citizen development, you may be in a position of
looking for better ways to connect the data the company
already has with the understanding its domain experts need.

Company data could include all kinds of archives or ‘legacy
data’, real time data such as generated from sensors, and
something in between, such as data generated by other
software applications, or data entered into a form.

47

You need to find ways that this data can be used to work out
answers to questions like where the company is, what is
happening, what to do next.

This is itself an abstraction task, trying to determine what useful
themes could be determined from the data, and then finding
out which of them would be useful to the domain experts you
are working with.

One of the obstacles might be that you don’t know about all the
processing which has been done on the data. It means that
people cannot comfortably work with data because they don’t
know what it has been through.

For example, if there is any ‘edge computing’ – that is,
processing on data from sensors as it is gathered, before
entering the data into a corporate system, then the logic of that
edge computing needs to be very clear. Examples of this could
include controls on a bank’s website for verifying what someone
wants to do with their online account, or a sensor’s
cybersecurity controls which stop someone changing the clock.

Abstraction and assessing technology

Could domain experts, and the people who support them, get
better at assessing technology, with better abstraction skills?
Even technology which has not yet been made?

At the moment, much of technology development is very
expensive trial and error. Investors fund a number of companies
in the hope that one will become a hit. Developers aim to build
a ‘minimum viable product’ as fast as possible to determine if
they are getting somewhere, which appears to do something
useful but may not be the most useful possible thing.

48

Could we achieve the same result, at much less cost by using
abstraction? We can use abstraction to understand what the
goals are, what digital technology would best serve these goals,
and whether the digital technology you are presented with can
deliver this.

Scripted thinking

Our third ‘mental tool’ we address in this section is scripted
thinking.

Scripted thinking is where people are following existing
procedures, themes, and abstractions, and they don't have the
need, capability, confidence or inclination to find new ones.

There’s nothing wrong with scripted thinkers, but if you’re
inventing new themes and abstractions you need to be able to
spot them, because they may not be able to understand what
you are doing, and they won’t be able to do it themselves.

There can be a lot of scripted thinking mindset in organisations.
It is a mindset which makes sense if you see your organisation
as something which maintains the status quo and delivers goods
according to a specific process. But it is the wrong mindset if
you need to change or evolve anything.

Script based thinkers are focussed on developing the script.
They think the goal is obvious, the challenge is building in the
steps to get there with increasing granularity, and then
following them, or ensuring other people follow them. Scripted
thinkers can learn new steps quite easily, including new details
between the steps.

49

The opposite of script based thinkers we could define as goal
based thinkers, people who focus on where we need to go and
are happy to continually work out the best way to get there,
even if it involves dumping a script they have followed for years.

Script based thinking does not incorporate re-assessment of the
world. Abstraction thinking is re-assessing all the time.

Scripted thinking can work in certain sectors where no
abstracted thinking is required – such as a government
organisation to enforce certain rules. Any suggestion of a
change in approach can be dismissed completely.

But even here, it is very helpful if the people implementing the
rules understand them and their purpose, so they can better
interpret whether or not someone is in compliance, such as
when they see something which breaks the letter of the rules
but fits with their intention. Such as when a train passenger
pays for a ticket in advance which is only valid on a certain day,
but mistakenly selects the wrong day on the website.

Scripted thinking can be easier for people, it is also a mindset
we can all default to when we are tired. It makes it easier for us
to feel less anxious about our position in the organisation, since,
after all, we are following the processes we are supposed to.

Sometimes scripted thinking people can be aggressive to others,
because they both feel threatened by people who are seeking
new ways to achieve the goals. They feel sure that scripted
thinking is the right path, because that’s the only type of
thinking they feel they know how to do.

Although goal orientated people, when they are tired, may find
it easier just to focus on what is needed to do to achieve the
goal, and leave out all the scripted steps.

50

Business environments need both scripted and abstraction
thinkers. Abstraction thinkers can be working out better ways to
do things, spotting problems emerging or risks, or working in
more inter-personal roles. Scripted thinkers can be managing
finances and ensuring the company follows its processes. But,
for no obvious reason, scripted thinkers tend to dominate.

If a group of people having a meeting gets too script-based,
then they can lose focus on the bigger picture completely and
just focus on improving the scripts. You may be familiar with
this. For example, a meeting of a group of people working
together on a document, who are having arguments about tiny
points of grammar, and have forgotten what the document is
actually saying or what it is for.

Script-based thinkers cannot understand or evaluate someone
else’s script, if it is different, because to do that requires
abstracted thinking. So instead, we can get a non-constructive
fight over whose script 'dominates' - and the loser gets the
tough task of trying to follow someone else's script.

Abstraction based thinkers can collaborate naturally, because
you can abstract anyone's experience to the point where it
agrees with anyone else's.

Script based thinkers cannot do well in a competitive
environment where their existing script proves not to be a
winning method. That would involve abstraction to the level of
seeing whether there is a better way to achieve the goal, and
maybe something they are doing is not relevant to the task, is
creating inefficiency, and can be omitted.

Scripted thinkers in IT

In your work supporting domain experts to become citizen
developers, if one of the biggest obstacles is script-based

51

thinkers, it won’t help that you may come across many of them
in the IT world.

Bear in mind, a computer itself is a script following machine.
The role of many IT people is trying to make software run on
computers, and trying to explain to other people how to work
with the software, which also means following scripts.

They may typically resolve problems by thinking carefully about
the script the computer is following, and where the activities do
not fit this script. Did you not enter something, update
something, load something, the way you were supposed to?

Using technology often requires complex script following. To
travel by Uber requires you to carry a mobile device, load its
apps, have credit cards, and follow the process for booking and
paying for a trip, which all adds up to quite a complex series of
scripts. No abstraction thinking required to use Uber.

This is not to say that all digital people are script followers.
Many digital people are very creative. The people who conceive
of new possibilities, set strategy, design and create products,
motivate staff, understand the competitive landscape, do sales
and marketing, and speak in public about the possibilities.

And it is not very desirable to have programmers who are purely
scripted thinkers. Just as it is not desirable to have people
operating heavy equipment who are scripted thinkers. You need
people who can immediately spot where their scripts don’t fit
the needs of the moment, and find a new approach accordingly.

Some examples from real domains

Introduction

52

Let’s try to illustrate some of the points in this book with
examples from real domains. This chapter will look at domains
which the authors work in and know well – maritime,
cybersecurity, decarbonisation, call centres and competency
management systems. The ideas in this book arose out of the
authors’ work in these domains.

It is important to have some understanding of how these
domains work to work out how domain experts might be helped
to do their jobs better. Although as a note, fairly in-depth
understanding of a domain is needed to have a good
understanding of where digital technology can do more.

Getting in-depth understanding of a domain is hard work, and
takes a lot of time and words. If you do not work in that
domain, it does not generally make for interesting reading. So
this chapter describes activities at a very abstracted level.

Maritime

The maritime industry, operating big ships, is full of domain
expertise. Just about everybody has a role of managing
something. This includes people at all levels and departments
working onboard ships, and working in the office.

Nearly everybody is a domain expert, needing the best possible
situation awareness, and all these domain experts could
become citizen developers, because digital tools would really
help them.

There is a lot of variability in the work, with ships constantly
being sent to different places, carrying different cargoes or
types of passengers, dealing with regulatory change, and also
changes in the weather. So while there are a lot of processes, it
demands what people call common sense, the ability to use
judgement to understand what to do in a certain situation,

53

where there aren’t written instructions, or scripts, available to
you.

The industry’s activities are divided into commercial and
technical operations. ‘Commercial’ means making decisions
about which ships to buy and when to sell them. Also working
with customers (cargo owners), negotiating charters (sort of
vessel lease agreements), then planning vessels to carry specific
cargoes, their route and speed.

‘Technical’ means actually running the vessels. That includes the
crew onboard ships who navigate the vessels, do maintenance,
and ensure safety, and the office staff who supervise the crew,
resolve problems, plan maintenance, purchasing, and ensure
overall technical integrity of the ships.

On the commercial side, the biggest factor which drives success
in ship owning has been described as being able to spot changes
in the market before competitors do – so you buy ships and sell
them at the right time. This is fundamentally a human
judgment issue, but many sources of information can feed it.

Then there are many decisions involved in the process of
chartering a vessel, including agreeing on a rate, predicting how
much it will cost to operate the voyage, and also keeping on top
of demands from customers.

On the technical side, people would benefit from better
situation awareness to know about the competency of crew
they are about to hire, the condition of equipment onboard the
vessel, any problems emerging with the vessel, emerging safety
risks, violation of safety procedures, how much emissions of
CO2 the ship is making and if they can be reduced, and much
more.

Decarbonisation of shipping is a particularly important challenge
of the 2020s. It involves gathering information about the

54

emissions the vessel is currently making, and understanding if
there are ways that the emissions can be reduced. This can be
through operational changes (routing, which generators are in
operation, how tanks are being cleaned), and more longer-term
changes, like adapting a vessel to switch to different fuels, or
other equipment investments.

There are many different ways to gather data from vessels, plot
what is happening, make carbon scores, and understand the
impact of changes such as different equipment and speeds. All
of this has potential for citizen developers to improve their
digital technology.

Cybersecurity

Cybersecurity is one of the biggest challenges of the 2020s. And
solving it comes down to situation awareness in multiple levels.

If we refer to a commonly used cybersecurity framework or
abstraction, it reduces cybersecurity to the themes of “identify,
protect, detect, respond and recover.” All of these involve
situation awareness.

“Identifying” is about understanding what you need to protect,
with perhaps some information assets needing more protection
than others, just as you might put your jewellery in a safe.
Different computer systems need different sorts of protection,
for example corporate networks or online games for children.

“Protecting” is about knowing what the appropriate safeguards
are, looking at your weakest areas, or places where you have
most at risk. Weak areas may be phishing e-mails which your
employees and systems are not good at detecting, sensor
devices which may still use their default passwords, or
unpatched PCs, or people with a lack of competence.

55

“Detecting” is about having awareness of what hackers may be
doing. This can include understanding the various types of hack.
It could include paedophiles trying to contact children via an
online game, criminals trying to make money with ransomware
or banking fraud, teenagers messaging around, or government
attacks on what they consider adversaries.

“Responding” is about awareness of the best ways to handle an
attack.

“Recover” might be about knowing how to restore a back-up or
remove viruses.

One of the weaknesses with many cybersecurity approaches is
that people take a purely technical approach, which can mean a
script-based approach, and hackers develop skills of
manipulating this. No-one would take a purely script-based
approach to physical security, and the weakness of such an
approach would be obvious. An approach to cybersecurity
based around implementing a certain product can have the
same weakness.

In the real world, the needs of every company for identify,
protect, detect, respond and recover are different, and need
awareness of different things. So you can see the value in
enabling domain experts to build or configure their own tools.

Decarbonisation

Citizen development is particularly suited for decarbonisation
projects, because there is a lot of new situation awareness
which is needed.

Solving the decarbonisation challenge could be distilled to the
question of finding ways to do what we need to do, but making
less emission while doing it.

56

So having awareness of the carbon emissions associated with
any choice, at the point of deciding, would be very helpful.

This can only be achieved by having good data about the carbon
emissions which are being made due to choices you have
already made, such as the choice of machinery, route, fuel use,
or whatever else. Also having awareness of whether a choice
with lower carbon emissions will affect financial performance in
a means which may affect the organisation’s financial
sustainability.

In future we can expect more carbon pricing, which will change
the calculation of how a certain choice relating to emissions will
also affect finances. There are many financial aspects to be
considered when making a choice, based around the costs and
expected returns, and carbon prices will be added to this.

To understand carbon emissions about our choices, we need to
gather and integrate information from multiple different
sources, emissions from products bought, fuel we combust
ourselves, perhaps leaks. Every company’s needs are different,
so it would be very helpful if the domain experts in the
organisation could have a close involvement in the building and
updating of such a system.

Call centres

With so much effort to enable people to do what they need
online, we could say that people only need to use a call centre
when they have a problem which is too complex to be solved
with information on a website, or the website is too hard for a
customer to use to find it. So that is already something of a
failure in digital systems.

Call centres need many employees, and often have high
turnover. So, there is not always much scope for training.

57

Software tools have been developed which can provide
situation awareness to call centre staff, giving them
recommendations about why someone is calling, and the best
way to resolve the problems.

Software tools have also been developed to support
management of call centre staff. Making tools which can count
call length, who hung up first, whether the outcome was
satisfactory, are easy enough to build, and commonplace. But
perhaps they are not very useful, and make the working
environment more unpleasant.

More useful would be software which can help track which
issues people are struggling with most, any trends with more
calls about a certain topic suddenly showing up. Also perhaps
predicting which telephone calls will be most difficult, so they
are spread out between staff, or perhaps diverted to more
experienced people.

A call centre manager would have the domain expertise to know
how this could be built. But would their expertise get
incorporated into software?

Competency management systems

Competency management systems is a technical sounding term
for something all teachers and organisation leaders need. They
need to understand what competencies people in their class or
team have achieved, where they have weaknesses, and what
would be best at fixing those.

They also need to understand which of the multiple e-learning
tools available is best at delivering what they need. Some
systems are geared more to memorisation, some more to
practise, and not everything can be taught using e-learning.

58

They also need an understanding of the best assessment
systems. Digital tools can easily assess factual knowledge if
people can express it using a multiple choice, but most useful
knowledge is not easily shared in this way.

We could say that competency management systems are in
their infancy, if we imagine a mature competency management
system being one which would help both manager and student
/ staff member know exactly where they stand and where they
need to get to.

It sounds possible to build using digital technology, but would
be very specialist, and would need a great deal of
customisation, aligning the computer’s assessment of
competence with what counts as competence in the real world.

Connecting citizen development with AI

To many people, AI is the most exciting thing happening in
digital technology, and it would be unusual, and hard to
understand, why someone would write a technology book
without mentioning it.

Citizen development is not a completely separate world to the
world of AI. But we need to think of AI differently to how it is
usually done if we are to bring these worlds together.

A common understanding of the purpose of AI is to make
machines think and do work. This is not the world we are
working in here. This book is about supporting domain experts,
not to replace them.

But AI can do a great deal to help domain experts. For example,
it can simplify large data volumes and draw out the main
themes from them, to make them easier for a domain expert to
work with.

59

AI systems are great at spotting anomalies in big data sets,
finding clusters in data, and trends and correlations. This is all
extremely useful for people. But you need a domain expert to
work out if the patterns could have a real-world cause. If not,
maybe they are not a useful pattern.

For this to work, the domain expert needs a good understanding
of how the AI is actually working, and its logic. Or at least, the
domain expert probably will ask for this after being let down by
the AI system once or twice and losing trust in it.

Domain experts can master skills in AI themselves. This has
been seen in the oil and gas industry, with people working with
equipment and subsurface data.

It is getting progressively easier to work with AI without having
advanced data science or algorithm programming skills, with
new tools being developed. But we are far from being able to
program AI without a basic understanding of the algorithms.

The process of working with domain experts and finding themes
can lead to domain experts being better able to express what
they want AI to do, and someone else being able to deliver it for
them. Programming AI tools is expensive, so it is useful if this
goal, and the value from achieving it, and business case for
investing in it, can be clearly expressed.

If you want a one-word answer for what machines can never do,
over the next decade at least, the answer is “abstract”. That’s a
very human skill. Machines can be programmed to do it, but
abstracting through following codes is not really abstracting,
just as map making is not about following a list of instructions
about what should and shouldn’t be on the map. Computers
can only understand something they have been specifically
programmed to understand. And nobody has yet managed to
program a computer to abstract anything, beyond following
specific programming.

60

There is a hit and miss element to human abstraction, if we
make a guess of what a good abstraction would be and then
test it on people. If it was purely hit and miss, a computer could
do this too. But human abstraction probably is far more
judgement than hit-and-miss.

Conclusion - authoritarian societies

So far, this book has focussed on making organisations better,
and better able to achieve societal goals.

This book will conclude by outlining a further benefit to this
approach of supporting domain experts to become citizen
developers, and that is that organisations in non-authoritarian
societies can be stronger than those in authoritarian ones.

Because being in an authoritarian society makes it very hard to
do abstraction.

Abstraction is a form of creative thinking, which people can only
do when they feel free to let their minds wander. It draws on
the full powers of our brain, it is hard work.

When we are stressed or unhappy, part of our brain power goes
into thinking about this. If we are disillusioned or unmotivated,
we do not see the reason to put all the power of our brains into
making our organisations better.

Script based thinking is like the default of human operations,
what we do when we are tired and unhappy. It is also possible
to force people to follow scripts through systems of
punishments if they are not followed. It is not possible to force
people to be creative, or look for new ways to achieve goals.

61

For authoritarian societies to be economically successful, they
need organisations which can be managed and staffed by script
followers.

This can include government organisations which have a brief to
implement what the leader decides, not think about better
ways to do something, and expect the public to follow the
orders, under threat of punishment.

This can include businesses which do the same thing over and
over again on a big scale, including in manufacturing, retail and
services, to standardise business offerings as far as possible, and
to do software development for big markets.

This discussion continues to the world of AI, which is
economically successful when it can roll out the same tool
thousands of times, and there are less concerns when it makes
a mistake.

An authoritarian society can roll out a face recognition AI
system in law enforcement easily, if it need not care about the
people who are mis-recognised.

Much of what non-authoritarian societies offer, and
authoritarian ones don’t, could be seen as a weakness from a
purely economic perspective. There is no clear benefit to a
company’s economy from providing state resources to care for
elderly or disabled, for example. Countries do this because
people see it as the right thing to do. Not all countries do.

If we are in a situation of a battle between authoritarian and
non-authoritarian societies over who has the strongest
economy, it is actually conceivable that the authoritarian one
could win. And then it can access the goal based and abstraction
thinkers by being the only pathway available for them to get an
income.

62

The way for non-authoritarian societies to be stronger
economically is to have stronger businesses, particularly in fields
which do not do the same thing over and over again on a big
scale.

We can see in 2021 that non-authoritarian businesses have a
clear edge on authoritarian ones in areas of manufacturing
which are intrinsically specialist and cannot be done the same
way on a big scale, such as developing specialist machinery for
factories. Also producing microchips, some areas of software
design, education and defence.

Non authoritarian societies are better at making highly complex
combustion engines, while the authoritarian ones may see that
they can win in mass produced, simpler, electric cars.

Non-authoritarian societies also have an edge in areas which
rely on complex risk management, including in financial,
engineering and heavy industry domains. Although this only
matters if you care about safety.

